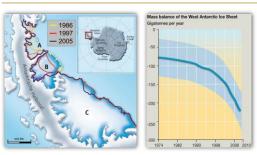

Paul Dennis – Microbial Ecology Group, UQ email: p.dennis@uq.edu.au | web: www.dennislab.net | tel: 0733652051

Antarctica is undergoing environmental change



- Most rapidly warming part of southern hemisphere 1950's-2000
- · Warming has now stopped
- · Precipitation changing

Breakup of ice sheets and melting of glaciers

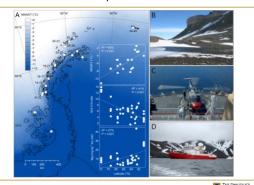
THE UNIVERSITY
OF QUEENSLAND

Ice sheets such as the Wilkins and Larsen A & B have completely disintegrated

Maritime Antarctic terrestrial environments

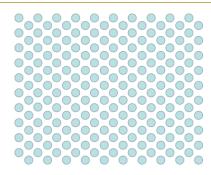
- · Ice-free terrestrial environments are dominated by vegetation-free soils
- · These soils harbour microorganisms that drive nutrient cycles

Little is known about the response of these organisms to environmental change

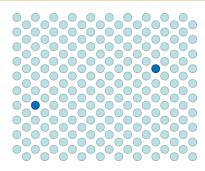

Key objectives

- Characterise the microbial diversity of maritime Antarctic soils
- Identify the environmental factors that most strongly influence microbial diversity

Sample collection

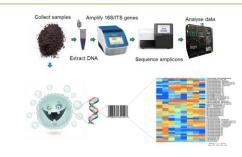


99% of soil microbes are difficult to culture


THE UNIVERSITY OF QUIENSLAND

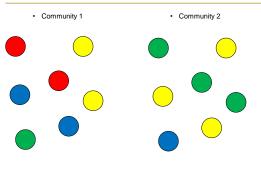
99% of soil microbes are difficult to culture

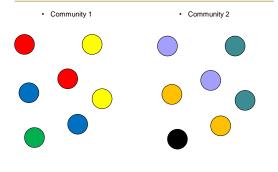
THE UNIVERSITY OF QUEENSLAND


99% of soil microbes are difficult to culture

THE UNIVERSITY OF QUEENSLAND

OF QUEENSLAND


Culture independent analysis of bacteria and fungi

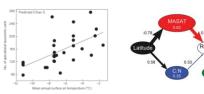

· Facilitates measurement of who's there and at what abundance

THE UNIVERSITY OF QUEENSLAND

Which community is richer?

What differs between these communities?

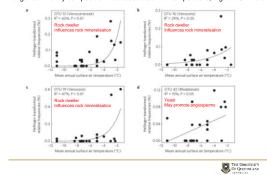
OF QUEENSLAND


Soil physicochemical measurements

Parameter	R	R ²	P value
MASAT (°C)	-0.81	65.0	<0.001 ***
Altitude (metres a.s.l.)	-0.31	9.7	0.051
pH	-0.21	4.3	0.197
EC (µS cm ⁻¹)	-0.01	0.0	0.957
Organic C*	0.18	3.1	0.275
N"	0.16	2.5	0.333
C:N	0.64	40.7	<0.001 ***
Ca*	0.15	2.3	0.357
Cu*	0.04	0.2	0.807
Fe*	-0.09	0.9	0.565
K*	0.14	1.9	0.392
Mg" Mn"	-0.52	26.7	<0.001 ***
b. Mu.	0.10	1.0	0.537
r 7n*	0.13	3.3	0.421
zn* Dissolved organic C*	0.18	4.3	0.258
Dissolved NO, -NNO, -N*	0.07	0.5	0.653
Dissolved NH _a -N*	0.08	0.6	0.646
Dissolved SO ₄ 2*	-0.01	0.0	0.938
Dissolved PO ₄ 3-*	0.11	1.2	0.500
Dissolved CI*	0.02	0.0	0.929
Moisture content (%)	-0.02	0.1	0.881

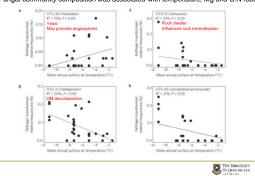
OF QUEENSLAND

Fungal richness was associated with temperature

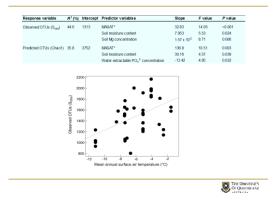

THE UNIVERSITY
OF QUEENSLAND

Fungal community composition

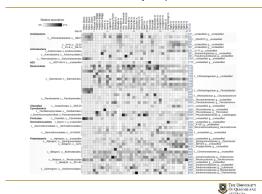
Mostly Ascomycota The state of the state of

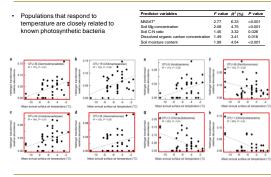

Fungal community composition

Fungal community composition was associated with temperature, Mg and C:N ratio



Fungal community composition


Fungal community composition was associated with temperature, Mg and C:N ratio


Bacterial richness was associated with temperature and moisture

Bacterial community composition

Bacterial community composition

THE UNIVERSITY OF QUIENSLAND

Concluding remarks

- · Temperature is the strongest influence on bacterial and fungal diversity
- Populations predicted to increase with warming include those able to fix carbon, mineralise nutrients and form mutualistic associations with plants
- Warming will increase microbial activities including nutrient inputs and decomposition
- Increases in biodiversity and nutrients may facilitate colonisation by plants

Greening of the Arctic

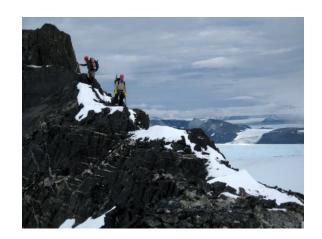
- In the Arctic, shrub and grass species are advancing into areas previously colonized only by lichens and mosses
- Studies in Canada, Scandinavia, and parts of Russia have reported similar findings

Greening of Sub-Antarctic Islands

Likewise, in Antarctica alien plant species are encroaching on previously un-vegetated areas, e.g. *Poa annua* on Macquarie Island

FALKLANDS

POINT OF DEPARTURE FOR THE ISLAND BASES



Questions

